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Distributed Compression for Condition Monitoring
of Wind Farms

Vladimir Stanković, Lina Stanković, Shuang Wang, and Samuel Cheng

Abstract—A good understanding of individual and collective
wind farm operation is necessary for improving the overall
performance of the wind farm ‘grid’, as well as estimating in real
time the amount of energy that can be generated for effectively
managing demand and supply over the smart grid. This paper
proposes a scheme for compressing wind speed measurements
exploiting both temporal and spatial correlation between the
readings via distributed source coding. The proposed scheme
relies on a correlation model based on true measurements.
Two compression schemes are proposed, both of low encoding
complexity, as well as a particle-filtering based belief propagation
decoder that adaptively estimates the nonstationary noise of the
correlation model. Simulation results using realistic models show
significant performance improvements compared to the scheme
that does not dynamically refine correlation.

Index Terms—Wind Farms, Distributed Compression, Dis-
tributed Source Coding, Adaptive Decoding

I. INTRODUCTION

The proliferation of alternative renewable sources of en-
ergy urges the development of informed decision making
and communications technologies that will maximize sustain-
able energy generation but still provide uninterrupted service
through efficient power distribution planning. The key to the
provision of efficient planning of transmission power systems
is availability of reliable information on the available sources
of sustainable energy at any time.

For example, wind energy as one of the most popular
sources of renewable energy depends on temporal wind speed,
which varies in time and space. To enable power distribution
system planning, precise and timely information of current
wind speed (including direction and orientation) is required.
This information must be conveyed in near real time to a
central substation from each of the wind farms that supplies
particular region. After collecting the data from all wind farms,
the central substation can estimate temporal wind energy gen-
eration. There have been studies in the literature on modeling
wind speed, but to the best of our knowledge, nothing has
been reported on effective communications of the readings
exploiting correlation between wind turbine measurements.
Communication of wind measurements is especially important
since the changes in wind speed can significantly reduce the
amount of generated renewable energy and consequently affect
supply and demand. Indeed, designing an effective power
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network infrastructure will depend on measurements made to
ensure the export of power from areas where wind generation
is high due to high wind speeds and import of power where the
speeds are low. To make these decisions in a timely manner,
measured wind readings from all neighboring (e.g., national)
wind farms need to be delivered and processed continuously
[1], [2].

Since several studies have shown high wind speed variations
during a single day, it is important to accurately transmit
timely wind parameters to the central substation, for imme-
diate generation assessment and future predictions. This paper
focuses on effectively communicating wind speed information
from multiple wind farms to the central substation. The main
communication challenges are related to the fact that the wind
farms are energy-constrained, remote and wireless transmis-
sion channels are bandwidth limited. This calls for efficient
low-complexity compression mechanisms that must operate in
real time. Moreover, due to the proximity of neighboring wind
farms, the proposed compression techniques should capture
spatial correlation (besides temporal) of the signals measured
without requiring communications between the turbines. As
demonstrated in [1], [2], there is a huge correlation between
wind measurements in neighboring wind farms (e.g., the study
in [2] provided models of correlation between 14 wind farms
in the UK).

We resolve the above challenges through the use of dis-
tributed compression, or distributed source coding (DSC).
DSC is an information-theoretical concept introduced in [3],
[4], [5] that refers to separate compression and joint decom-
pression of mutually correlated sources. DSC is especially
suitable for the targeted scenario because it provides very
low complexity encoding solutions, and enables exploiting
spatial correlation without the need for data exchange between
encoding nodes. DSC has been proposed for data gathering
in wireless sensor networks where multiple, closely related
sensors are expected to have statistically dependent readings.
Targeting wireless sensor networks and video surveillance
networks, a practical DSC code design using channel coding
was proposed in 1999 under acronym DISCUS [6]. DISCUS
was followed by many improved solutions that exploit more
advanced channel codes, provide rate allocation flexibility,
decrease complexity, or enable low channel codeword sizes
(see [7], [8] for a review).

DSC is particularly suitable for the wind turbine mea-
surement compression due to resource limited encoding at
the turbine and high coding efficiency due to exploitation
of spatial correlation among turbine sites. Indeed, the ef-
fective DSC design can capture both temporal correlation
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between successive readings at a single turbine site and
spatial correlation between the readings of closely located
sites. However, a prerequisite for efficient DSC code design is
accurate estimation of the correlation between the measured
data. Indeed, a usual assumption in the design of distributed
compression codes is that all encoders and the decoder have
perfect knowledge of the statistics of the measured data,
i.e., the correlation noise among sources. However, often the
correlation model is unknown, or the statistics of the sources
vary over time. Indeed, in the targeted wind farm scenario,
we are dealing with compression of non-stationary sources
whose intensity and direction changes irregularly. This poses
a huge challenge on the underlying compression scheme since
correlation unpredictably varies over time.

Recently, in [9], particle filtering was integrated into the
DSC decoding process to estimate and track correlation
changes over time. The scheme maintains low encoding com-
plexity, and introduces changes to conventional DSC coding
only at the decoder side. The scheme is used in [10] to track
correlation changes in high-motion video within a distributed
video coding (DVC) design [11], [12]. The concept has been
successfully extended to multiview images captured from solar
system satellites in [13].

In [1], using a vector autoregression (VAR) approach, a
spatio-temporal correlation model between wind speed read-
ings in neighbouring wind turbines is proposed based on true
measurements in Scotland. The model captures both the time
varying nature of the wind speed at each site as well as
the spatial correlation between the readings at neighboring
sites. The additive correlation noise is in general nonstationary
which is an additional challenge for the code design calling
for effective correlation tracking.

In this paper we apply the information-theoretical concepts
of [9], [10] to distributed compression of wind speed infor-
mation from wind farms. The proposed multiterminal source
coding scheme is of low encoding complexity, but still able to
effectively exploit spatio-temporal correlation within measured
data. The wind farms compress their measurements using DSC
and send the compressed data to the central substation, where
the joint decoder estimates and tracks the change of correlation
using particle-filtering based belief propagation. The scheme
can be integrated in the IEC 61400-25 international standard
for monitoring of wind power plants and control information
exchange.

The paper is organized as follows. Section II gives a brief
overview of DSC. Section III describes the system model and
the proposed compression scheme including a brief overview
of the decoding process. Simulation results of our proposed
DSC setups are presented in Section IV. Section V concludes
the paper and outlines future work.

II. DISTRIBUTED SOURCE CODING (DSC)

DSC considers independent compression of correlated data,
where correlation is exploited at the decoder side. Let X and
Y be two correlated sources that should be compressed and
sent to a central point for decoding. The compression must be
done independently, that is, X and Y do not communicate,

whereas decompression is joint. For discrete X and Y and
lossless compression, in 1973, Slepian and Wolf [3] showed,
surprisingly, that asymptotically, separate compression can be
as efficient as joint compression, as long as X and Y are
decompressed jointly. The Slepian-Wolf setup is shown in
Figure 1, where RX and RY are the respective compression
rates of encoded sources X and Y . The DSC problem was
introduced in [3] and was followed by intense information-
theoretical research into developing theoretical compression
bounds and quantifying coding gains for similar setups.

X

Y

Joint Decoder

RX

RY

Encoder

Encoder

( )YX ˆ,ˆ

Fig. 1. Slepian-Wolf setup with two sources.

There are two types of Slepian-Wolf coding setups investi-
gated in the literature [14]. The first one, presented in Figure
1, is called non-asymmetric Slepian-Wolf coding, where both
sources need to compress their information exploiting corre-
lation. In the second setup, called asymmetric Slepian-Wolf
(SW) coding or source coding with decoder side information,
one source, say X , needs to be compressed assuming that
another source, Y , called side information, is available, un-
compressed, at the decoder as side information.

An interesting extension of Slepian and Wolf’s result is
reported in 1976 by Wyner and Ziv [4] who considered a
lossy version of the asymmetric SW coding. In the Wyner-
Ziv (WZ) setup, X needs to be recovered under a certain
distortion constraint and can be discrete or analogue. Wyner
and Ziv showed that if X and Y are jointly Gaussian, then
under a mean square error (MSE) distortion constraint, there
is no rate loss due to the absence of Y at the encoder. For
other correlation models, there is a limited coding loss, which
is usually small [15].

The extension of general, non-asymmetric SW coding to
the lossy case is referred to as multiterminal source coding
[5]. There are two types of multiterminal (MT) source coding
schemes. One, called direct MT source coding, where two
correlated sources need to be compressed independently and
recovered jointly under distortion criteria. Another type is
indirect MT source coding, where a single source is observed
by two (or more) sensors, where each sensor observes only a
noisy version of the sources. The sensors need to compress
their observations and transmit them to the central unit, which
recovers the source using a single distortion measure. In this
paper we focus on direct MT source coding.
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Motivated by the need for distributed compression in wire-
less sensor networks, in 1999, the first practical DSC scheme,
or more precisely WZ coding scheme, based on channel codes
appeared [6]. It was followed by many improved and more
flexible solutions (see [7], [8] for reviews). Practical code
designs for non-asymmetric SW coding and direct and indirect
MT source coding are reported in [14], [16] and references
therein. Nowadays, DSC designs are at the core of distributed
video coding (DVC), a novel paradigm that reduces the
complexity of video encoding by shifting motion estimation
complexity to the decoder side [11], [12] and opening new
possibilities of video distribution.

The main assumption in the proof of SW and WZ theo-
rems and in the majority of developed code designs, is the
knowledge of statistics at the encoder and the decoder. That
is, both encoder and decoder must know correlation between
X and Y before coding takes place. In many cases this is an
unrealistic assumption since correlation varies over time. In
[9], a WZ coding scheme is proposed that unifies the process
of online temporal correlation estimation and SW decoding
into a single iterative process providing better statistics esti-
mate and consequently improved performance. The correlation
model, assumed in [9], is based on simple additive white
Gaussian noise. The contributions of this paper are: (i) tracking
of both spatial and temporal correlation statistics, (ii) a direct
MT source codec design, (iii) a decoder based on particle-
based belief propagation, whose algorithm operates on a factor
graph where the correlation noise is modelled as [1], (iv)
performance bounds of the proposed direct MT source coding
scheme.

III. THE PROPOSED SCHEME

In this section we describe the wind farm system and the
correlation model used to model wind speed. This is followed
by a description of the proposed solution.

A. System setup

The targeted scenario is shown in Figure 2, where the
measurements from each wind farm are first quantized, then
independently SW-encoded for compression and possibly en-
tropy coded for compression of side information that will be
generated at the decoder. Both SW-encoded and entropy coded
measurements are sent to the central substation for decoding.
That is, closely located wind farms are measuring wind speed,
compressing the readings and sending the compressed data
to the central substation for decoding. It is assumed that
the relative position of the wind farms is known and that
their compression units are synchronized. For simplicity, we
consider the case of two farms only. In the case of multiple
farms, to keep complexity low, one would group them in pairs
and independently perform coding on each pair.

Let X1(t) and X2(t) be the wind speed measured at
wind farm 1 and 2, respectively, at time t. Let X(t) =
[X1(t)X2(t)]T . It was shown in [1] that a good model relating
the measurements in the two wind farms is given by:

X(t) = Φ1X(t− 1) + Φ2X(t− 2) + n(t), (1)

where n(t) = [n1(t)n2(t)]T is white noise with n1(t) and
n2(t) being nonstationary noises at wind farms 1 and 2,
respectively; Φi, i = 1, 2 is a matrix that depends on the
relative position of the farms and is known at the encoder
and decoder.

As suggested in [2] based on measured data in 14 UK wind
farms, elements of Φ can be identified by multivariate least
squares estimation, and reflect the influence of one site to
another.

Each wind farm needs to compress its readings and send
the data to the central substation, which collects the data
from both farms before attempting to jointly decompress them.
We assume that communication is always error free (via
effective physical-layer protection) and focus on distributed
compression next. For simplicity in the following, we assume
that Φ2 is a zero matrix, and attempt to exploit only first-order
correlation dependency between the two random variables, that
is, we simplify (1) to:

X(t) = ΦX(t− 1) + n(t). (2)
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Fig. 2. The block diagram of the proposed system.

B. The proposed solution

In this section, we propose two coding solutions: one which
we call the asymmetric scheme and another, the symmetric
scheme, which rely on direct MT source coding [5], [16].

1) Asymmetric scheme: The block diagram of the proposed
asymmetric scheme is shown in Figure 3. In this scheme, one
farm, say farm 2, sends its measured data X2(t) using quanti-
zation (Q) possibly followed by conventional entropy coding,
such as Huffman coding. After decoding, the reconstructed
measurement X̂2 is used at the decoder to generate side
information Y (t) for WZ decoding of compressed readings
from the first wind farm. The contents of Φ can be seen as
representing the fractional contributions from X1(t − 1) and
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X2(t− 1) towards X1(t), and similarly for X2(t), that is:

X1(t) = φ11X1(t− 1) + φ12X2(t− 1) + n1(t), (3)

and

X2(t) = φ21X1(t− 1) + φ22X2(t− 1) + n2(t), (4)

where φij is the element in matrix Φ in (2) in the i-th row
and j-th column. Thus, Φ provides information about spatial
and temporal correlation between wind speed measurements.

The encoder in farm 1, splits the measurements into odd
(X1(2τ−1)) and even (X1(2τ)), where τ is a positive integer
in the rest of the paper. The odd measurements are multiplied
by φ21. Both φ21X1(2τ−1) and X1(2τ) are quantized sample-
by-sample, using a scalar quantizer (Q). Then, quantization
indices are split into bitplanes and each bitplane is indepen-
dently compressed using SW coding via low density parity
check (LDPC) codes. This way two syndrome vectors are
formed S1(2τ−1) and S1(2τ) for odd and even measurements,
respectively, for each set of N measurements. Note that multi-
plication by φ21 is done to avoid magnification of the noise at
the decoder. Bitplane-by-bitplane compression enables more
flexible compression rate selection since different bitplanes
will be correlated in different ways, e.g., the most significant
bitplanes (MSB) are correlated the most, and so forth.

The decoder generates side information as:

Y (2τ − 1) = X̂2(2τ)− φ22X̂2(2τ − 1), (5)

where X̂2(t) is the estimated measurement of farm 2 at time
t.

The WZ decoder uses Y (2τ − 1) as side information and
received syndromes for odd measurements S1(2τ − 1) to
recover X̂1(2τ − 1). That is, the decoder uses the correlation
channel model [7], [14]:

Y (2τ − 1) ≈ φ21X1(2τ − 1) + n2(2τ), (6)

that follows from (5) and (4), to estimate X1(2τ − 1) as
X̂1(2τ−1). Note that this is done at time 2τ (since it depends
on X̂2(2τ)), thus X1(2τ − 1) is decoded introducing a delay
of one time sample. The sample at time 2τ is then decoded
from

X̂1(2τ) = φ11X̂1(2τ − 1) + φ12X̂2(2τ − 1) + n1(2τ), (7)

using

Y (2τ) = φ11X̂1(2τ − 1) + φ12X̂2(2τ − 1), (8)

as side information and the received syndrome S1(2τ) that
corresponds to the even measurements of farm 1.

Note that the decoding is done in two stages: during the
first stage spatial correlation is exploited while in the second,
temporal correlation.

The odd and even samples can be sent at different rates
and thus can employ different SW codes. Alternatively, farm
1 can compress the difference X1(2τ)−φ11X1(2τ −1) using
SW coding and then the decompression with side information
φ12X̂2(2τ−1) can proceed in parallel with the decompression
of X1(2τ − 1) with side information Y (2τ − 1).
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Fig. 3. The proposed asymmetric scheme.
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2) Symmetric scheme: In the asymmetric scheme described
above, in one time window only one farm uses DSC, whereas
the other one resorts to conventional compression. Using
time-sharing or channel code partitioning (see [14], [16] and
references therein), it is possible to balance the DSC rate
load of the the wind farms. Another way to evenly distributed
DSC compression is the proposed symmetric scheme shown
in Figure 4.

Both farms conventionally compress all odd measurements
(X1(2τ − 1), X2(2τ − 1)) using scalar quantization followed
by entropy coding. All even measurements (X1(2τ), X2(2τ))
at both farms are compressed using DSC with scalar quan-
tization followed by bitplane-by-bitplane LDPC encoding for
syndrome forming as in the asymmetric scheme.

The decoder first recovers odd measurements from both
farms as X̂1(2τ−1) and X̂2(2τ−1). Then, to recover X1(2τ),
the decoder employs SW decoding assuming:

X̂1(2τ) = φ11X̂1(2τ − 1) + φ12X̂2(2τ − 1) + n1(2τ), (9)

using Y1(τ) = φ11X̂1(2τ − 1) + φ12X̂2(2τ − 1) as side
information.

Then, X2(2τ) is recovered as:

X̂2(2τ) = φ21X̂1(2τ − 1) + φ22X̂2(2τ − 1) + n1(2τ), (10)

using Y2(τ) = φ21X̂1(2τ − 1) + φ22X̂2(2τ − 1) as side
information.
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Note that side information captures both spatial and tem-
poral correlation. As in the case of asymmetric scheme, two
SW decodings are necessary, but in contrast to the asymmetric
scheme where these two decodings must be done serially, in
the symmetric scheme they can be performed in parallel. Note
that both proposed scheme essentially employ asymmetric
direct MT source coding.

3) Rate-distortion Analysis: Next, we estimate the required
compression rate assuming two zero-mean Gaussian memo-
ryless sources, ideal quantization, and use the mean squared
error (MSE) distortion metric. First we look at the asymmetric
scheme.

Let the required rate to compress measurements of farm 1
to achieve MSE D1 be:

RX1(D1) = Rodd1(D1) + Reven1(D1), (11)

where Rodd1(D1) and Reven1(D1) are the required rates for
odd and even measurements, respectively.

Note that the correlation channel is a Gaussian channel
given by (6), where the side information Y (2τ−1) is given by
(5). Assuming that n2(2τ) is a Gaussian memoryless source
independent of X1(2τ − 1), then Rodd1(D1) is:

Rodd1(D1) =
1
2

log+ σ2
N2

D1(1 +
σ2

N2
(φ21σ1)2

)
, (12)

where σ2
N2

is variance of n2(t) and σ2
1 is variance of X1(t).

Here log+ p = log p for p > 0 or 0, otherwise. For derivation,
see [7] and references therein.

From the second correlation channel (7) and side informa-
tion (8), we get:

Reven1(D1) =
1
2

log+(
σ2

N1

D1
). (13)

Then from (11), (12), and (13) the minimum rate need to
compress wind farm 1 measurements given farm 2 measure-
ments at MSE level D1 is:

RX1(D1) = log+(
φ21σN1σN2σ1

D1

√
φ2

21σ
2
1 + σ2

N2

). (14)

The rate-distortion characteristic of farm 2 is given by:

RX2(D2) ≈ 1
2

log+ σ2
X2

D2
, (15)

where σ2
X2

is the variance of X2(t) (see [7] and references
therein).

It can easily be confirmed that both asymmetric scheme and
symmetric scheme have the same theoretical performance, that
is, the same total rate sum R = RX1 +RX2 . Thus, the individ-
ual rate limits of the wind farms for the symmetric scheme are
RX1(D) = RX2(D) = R/2, where R is the sum of the right-
hand side of (14) and (15) with appropriate D. Note, however,
that in the practical realization of the symmetric scheme, there
is no error propagation due to successive SW decoding.

4) Adaptive Decoding: The decoding procedure is an
adapted version of [9] and [10], where a DVC application with
different correlation noise model and side information genera-
tion is tackled. The compressed stream (syndromes) is sent to
a graph-based SW decoder, which uses the belief propagation
(BP) algorithm with particle filtering (PF) to estimate current
correlation noise n2(t) and decompress the source. The PF-
BP-based algorithm operates on a joint 3D factor graph that
represents the probabilistic relationship among SW coding, bit-
plane coding and correlation tracking - see Figure 5 and [10]
for details of the factor graph construction and the PF-BP
algorithm. These are mapped into appropriate variables nodes
and factor nodes, where variables nodes denote unknown
variables such as SW coded bits and correlation variance
and factor nodes represent the algebraic connection among
multiple variable nodes. In this paper, correlation variable
nodes are modelled as Gaussian and vary slowly over time.

In the PF-BP algorithm, messages are passed iteratively
between connected variable nodes and factor nodes in the
different regions of the graph (region 1: bipartite graph con-
necting correlation variable and factor nodes, region 2: 2D
SW factor-sub-graph representing SW code used for each bit-
plane) until the algorithm converges or until a fixed number of
iterations is reached. These messages (inferences or beliefs on
source bits and correlation) will represent the influence that
one variable has on another. Standard BP (the sum-product
algorithm), generally used for SW LDPC decoding, can handle
only discrete variables. The correlation variance, however,
is not a discrete variable, since it varies continuously over
time. We therefore resort to PF, which is integrated within the
standard BP algorithm in order to handle continuous variables.

PF estimates the a posteriori probability distribution of the
correlation variable node by sampling a list of random particles
with associated weights. Systematic resampling is applied once
all weights have been updated for all particles in each variable
node to discard particles with negligible weight and concen-
trate on particles with larger weights. To maintain diversity
of the particles, the new particle locations are perturbed by
applying the random walk Metropolis-Hastings algorithm. The
weight of each particle is then reset to a uniform weight for
each particle. A new codeword is generated at the end of each
iteration until the BP algorithm finds a valid codeword or until
it reaches a maximum number of iterations.

IV. SIMULATION RESULTS

In this section we report results of our simulations for the
case of two neighboring wind farms measuring wind speed and
sending their compressed readings to the central substation.
We show the results as coding/compression rate required for
DSC versus MSE between the original samples and recon-
structed ones. All results are averaged over 100 simulations,
and MSE contains both “fine” quantization distortion as well
as “coarse” distortion due to SW decoding errors [7]. In all
our experiments we set matrix Φ to contain all 0.5, which puts
equal weight on spatial and temporal signal component (see
(3)-(4)). The code length is always 10,000 symbols/samples,
and each sample is quantized into q bits.
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We present our results for the symmetric setup only, which
slightly outperforms the asymmetric setup, because of error
propagation in the latter. Note that in the symmetric setup, the
employed channel code length is 5000 bits for each bitplane
since every second measurement is compressed using DSC by
each wind farm.

The number of particles tracking each correlation variable
is set to 10 and the variance of the correlation between
particles is σ2

γ = 0.07. These values were heuristically found
to provide the best results. The maximum number of decoder
iterations was set to 500 in case the PF-BP algorithm did
not converge, and the scalar Lloyd-Max quantizer, trained
using side information, is used for quantization. To keep the
overall complexity low and for proof-of-concept, we use low-
complexity regular LDPC codes with variable node degree 4
for SW coding [9]. More complex irregular codes would result
in improved overall performance.

As a benchmark scheme, we use a DSC scheme that uses
the same LDPC code and the same code length for compres-
sion, but exploits standard BP decoding without correlation
tracking.

Figure 6 shows the obtained results as the required coding
rate vs. MSE. Each sample is quantized using scalar quan-
tization into either q = 4 or q = 6 bits, and SW coding
is done bitplane-by-bitplane. Thus, q different LDPC codes
are used. The number of syndrome bits per bitplane/layer is
determined heuristically to minimize the residual bit error rate.
We initialise and maintain the correlation noise unchanged as
white Gaussian with variance σ2 = 0.01.

It can be seen from the figure that the proposed PF scheme
outperforms the benchmark scheme. This is despite the fact
that the correlation noise statistics do not vary over time. As
expected, at low rates, it is better to use q = 4 quantization
levels, whereas at the high rates, q = 6 provides slightly better
performance. At 1 bits/sample and q = 4 the benchmark
scheme reaches the performance of the PF scheme and the

remaining noise is only the quantization noise. For q = 6, the
proposed scheme shows error-free SW decoding performance
at rate 2 bits/samples, while the benchmark scheme only at 4
bits/sample. The figure also shows the theoretical limit derived
in the previous section. Note that the additional estimation step
is applied after SW decoding. Since the resulting estimation
gain diminishes as quantization step size decreases (see [7],
[16]) a large gap to the bound occurs at higher rates.

The next figure shows results when the noise is white
Gaussian with variance that follows Gaussian distribution and
has mean of σ2 = 0.01. That is, the variance slowly varies over
time. As expected, the proposed PF-based scheme significantly
outperforms the benchmark scheme. Thus, the proposed PF-
based scheme successfully tracks the changes in the correlation
and “adapts” BP decoding. Note that DSC theorems only hold
when the source statistics is assumed to be constant. Therefore,
no theoretical bound is shown in Figure 7. One can see that the
trends are very similar to the previous example. A small gap
between q = 4 and q = 6 PF curves for high rates is due to a
lower quantization loss when 6 bits are used for quantization.
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Fig. 6. Code rate vs. MSE for q = 4 and q = 6 and σ2 = 0.01.

It can be seen from the two figures that significant sav-
ings in communications bandwidth can be achieved using
the proposed solution.Indeed, assuming sampling rate of fs

samples/sec, the proposed scheme at q = 4 requires roughly
for 0.5fs bit/sec and 2.5fs bit/sec less bandwidth than non-PF
scheme, for q = 4 and q = 6, respectively.

V. CONCLUSION

In this paper we proposed a scheme for compressing wind
speed measurements in a wind farm. Wind speed between
wind farms provides important information necessary to esti-
mate the amount of energy that can potentially be generated by
the wind farm. The proposed solution exploits both temporal
and spatial correlation between the wind farms’ readings via
distributed source coding. Moreover, the nonstationarity of the
correlation model is taken care of with the particle-filtering
based belief propagation at the decoder. The resulting scheme
has low encoding complexity while being able to exploit
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Fig. 7. Code rate vs. MSE for q = 4 and q = 6 and varying correlation
noise.

correlation between the wind farms and dynamically track the
changes in correlation noise. Simulation results using realistic
models show impressive performance improvements compared
to the scheme that does not track correlation.
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